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2.2 Strong Ground Motion

2.2.1 Strong Ground Motion Network

The world densest digital strong ground motion network of Taiwan with the station mesh of 3 km
in the urban areas (Shin et al., 2000) monitored the strong ground motion of the 1999 Chi-Chi
earthquake.  Since 1996 the Seismological Center of the Central Weather Bureau (CWB) of Taiwan
has been deploying over 600 seismometers, mostly strong ground motion instruments especially for
the metropolitan areas, due to six-year Taiwan Strong Ground Motion Instrumentation Program
(TSMIP). Over 400 free-field three-component acceleration records from the main shock were
retrieved by 7 November 1999, especially from near-source stations.

The acceleration sensors used, have a flat response from DC to 50 Hz with a 200 samples per
second and full scaling capacity of +2 g.  The accelerographs are operated in trigger mode with the 20-
seconds pre-event memory and 5-seconds post-event memory after the signal drops below the
threshold level (Shin et al., 2000; Loh et al., 2000).  Figure 2.2.1 shows the locations of the CWB free-
field accelerograph stations and the epicenter of the main shock of the Chi-Chi earthquake.

2.2.2 Strong Motion Indices

In order to investigate the strong motion characteristics of the 1999 Chi-Chi earthquake, the Japan
Meteorological Agency (JMA) instrumental seismic intensity (IJMA), as well as other ground motion
indices such as Spectrum Intensity (SI), Peak Ground Acceleration (PGA), and Peak Ground Velocity
(PGV), were calculated.  Four hundred twenty (420) free-field three-component acceleration records,
which were retrieved from the CD-ROM of free-field strong-ground data (the Seismological Center of
CWB, 1999), were used.  The calculated indices are listed in the Appendix.

Since some of the near-fault ground motions are characterized by long-period, pulse-like time
histories, an appropriate baseline correction scheme was used to preserve these important near-field
motion characteristics.  In this study, for the original acceleration records from the near-fault stations,
the segmented base-line correction scheme, which adjusts the records by shifting the last part of zero-

Figure 2.2.1.  Locations of the CWB free-field strong motion stations, the epicenter, and the
surface fault of the 1999 Chi-Chi, Taiwan earthquake.
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lines, were applied (Boore, 1999; Kostadinov and Yamazaki, 2000).  For the other stations, the
average baseline correction was employed.

The velocity time histories were obtained by the ordinary differential equations applying to
algebraic ones called Runge-Kutta tequnique and Newmark method for the near-fault stations and
other stations, respectively.

At TCU052 and TCU068 stations in the northeast hanging-wall side of Chelungpu fault, the PGV
reached as large as 266 cm/s and 384 cm/s, respectively.  In contrary, at TCU129 station in the
southern footwall side of the fault, the PGV observed as 79 cm/s, while its PGA reached more than
980 cm/s2.  This also can be seen in Figure 2.2.2, which shows the distribution of the resultants PGV
and PGA.  In spite of these large PGV values, structural damages around the instruments were not so
severe.  This is due to the fact that the period of the pulse is too long at these stations.  Since the PGV
is affected by such a long period content, it is sometimes not a reliable parameter to express structure
damages.

Instrumental Seismic Intensity

In Japan, the JMA intensity has been used as a measure of strong shaking for many years. It had
been determined by the human judgment of JMA officers.  But, in the early 90s, JMA started to move
to an instrumental seismic intensity from human judgment.  On 1996, the JMA intensity scale was
revised and a large number of seismometers measuring the JMA intensity were deployed throughout in
Japan (JMA, 1996).  The instrumental seismic intensity, which is obtained from the three-component
of acceleration records, is currently broadcasted through public TVs and radios soon after the
occurrence of earthquakes.  For disaster management agencies in Japan, it is used as the most
important index to estimate structural damage due to earthquakes (Yamazaki, 1998).  The details of
JMA seismic intensity algorithms are given in Shabestari and Yamazaki (1998).

In Taiwan, however, the old JMA intensity scale determined by human judgment is still used.  An
intensity distribution presented by CWB was made using an attenuation relation for PGA and

Figure 2.2.2.  The relation between resultants PGV and PGA for the 1999 Chi-Chi,
Taiwan earthquake.
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Kawasumi equation. Kawasumi equation, which relates the PGA and the old JMA intensity scale, was
proposed in 1943.  But, due to the recent advancement in the sensitivity of accelerometers, the
Kawasumi equation was found not to fit the PGA- instrumental JMA intensity relation (Tong and
Yamazaki, 1996).

Figure 2.2.3 shows the distribution of the instrumental seismic intensities (IJMA), calculated from
the 420 CWB stations.  It is seen that the large intensity region is distributed in the south-north
direction near the Chelungpu fault and close to epicenter regions.  The largest intensity was recorded
at TCU084 (hanging wall) station as a 6+ in the JMA scale in the east side of epicenter, following the
same intensity level by TCU052 (hanging wall), TCU068 (hanging wall) both in the northern part of
the fault, and TCU065 (foot wall) in the central part of the fault stations.

The relation between seismic intensity and larger of the two horizontal acceleration (PGAh) is
given in Equation (2.2.1) for the 420 Chi-Chi event records.

IJMA = 1.04 + 1.78 log10(PGA)h σ = 0.188 (2.2.1)

Figure 2.2.4 compares the obtained relation with the relation of Tong and Yamazaki (1996),
which was derived using 205 sets of accelerograms obtained from earthquakes in Japan (1993
Kushiro-Oki EQ, 1994 Hokkaido-Nansei-Oki EQ, 1994 Hokkaido-Toho-Oki EQ, 1994 Sanriku-
Haruka-Oki EQ, 1995 Hyogoken-Nanbu EQ and its aftershock) and in California (1994 Northridge
EQ). Some difference is observed between the two PGA-JMA intensity relations. Since the long
period contents are dominant in some records in the Chi-Chi event, the same PGA value gives a larger
intensity.

Spectrum Intensity

The spectrum intensity (SI) is one of the ground motion indices that is used to estimate the
structural damage due to earthquake.  In Japan, the SI value is used as the index to shut-off natural gas
supply after a damaging earthquake.  Based on the seismic records and damage of gas pipes around the
instruments due to the 1995 Kobe earthquake, a SI value of 60cm/s was set as the level of shaking to
mandatorily shut-off a city gas supply.  In this objective, Tokyo Gas Co., Ltd. has developed the SI
sensor (Katayama et al., 1998) and the new SI sensor (Shimizu et al., 2000), which calculate the SI
value in the sensor using horizontal acceleration records. Recently, the deployment of new SI-sensors
has started in Tokyo metropolitan area, and the super dense seismic monitoring system (SUPREME)
with 3,700 new SI sensors will be completed by 2007.

The spectrum intensity is calculated as the area under the relative-velocity response spectrum
with damping ratio 0.2 between the periods of 0.1 s and 2.5 s, divided by the period interval (Figure
2.2.5).  In this study the SI values are computed for each 1.0 degree on the horizontal plane and the
maximum of them is defined as the SI.  Equation (2.2.2) is the relationship between the IJMA and SI,
calculated for the 420 Chi-Chi event records.

IJMA = 2.23 + 1.94 log10 SI σ = 0.112 (2.2.2)

Figure 2.2.6 shows the comparison between the obtained relationship for the Chi-Chi earthquake
and the relationship proposed by Tong and Yamazaki (1996). The SI-JMA intensity relation for the
Chi-Chi earthquake is almost same as the existing relation.  This observation indicates that both the
JMA intensity and SI are not affected by long period contents, which are dominant in the records such
as TCU068 and TCU052.

The relationship between the SI and PGV is shown in Figure 2.2.7 for the 420 records of the Chi-
Chi earthquake. Although, in most cases the SI value is very close to the PGV (SI=1.18 PGV by Tong
and Yamazaki, 1995), a large difference is observed for some near-fault stations (e.g. TCU068,
TCU052).  This observation can be explained by the fact that the long period contents larger than 2.5 s
are dominant in these records.  Since the SI is obtained as the average amplitude of the velocity
response between 0.1 s and 2.5 s, it is not reflect such long period contents.  On the contrary, the PGV
is affected by such long period contents, as seen in the plots of the velocity response spectra in the
following section.  The PGV reached as much as 384 cm/s in TCU068, due to the long period pulse
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motion, while the SI and JMA intensity are 82 cm/s and 6.1, respectively.  Hence we must be careful
to use PGV as an index to estimate structural damage.

Figure 2.2.3.  Distribution of the JMA seismic intensity for the 1999 Chi-Chi earthquake
(Refer to color figure 1).
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Figure 2.2.4.  Comparison of the relation between seismic intensity (IJMA) and larger of
two horizontal PGAs with the relation of Tong and Yamazaki (1996).

Figure 2.2.5.  Definition of Spectrum Intensity SI.
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Figure 2.2.6.  Relationship between the IJMA and SI, calculated for the Chi-Chi
earthquake, and that proposed by Tong and Yamazaki (1996).

Figure 2.2.7.  Resultant peak ground velocity with respect to the spectral intensity for
420 stations from the 1999 Chi-Chi earthquake.
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2.2.3 Near Fault Strong Motion

Maximal Ground Motion

In order to demonstrate the characteristics of near-fault strong motion from the large crustal
earthquake, the resultant velocity time histories of two horizontal components on the horizontal plane
between 00-3600 are calculated for sixteen near-fault stations.

To examine the effects of the hanging wall and footwall, and those of the forward and backward
rupture propagations from the hypocenter, the location of some near-fault stations and their maximal
velocity directions are demonstrated along the surface fault in Figure 2.2.8.  In the figure, the arrow
bars indicate the maximal velocity direction on the horizontal plane.  The difference in the amplitudes
of strike-normal and strike-parallel components is very important characteristics of the near-fault
ground motion records (Somerville et al., 1997; Somerville, 2000).  The PGV is observed to be much
larger on the hanging wall side (TCU 068, TCU052) than the footwall side (TCU065, TCU067).  The
maximum velocity direction is observed as normal to the fault for both the hanging wall stations
(TCU068 and TCU072) and footwall stations (TCU0129, TCU076, TCU075, TCU065, TCU067, and
TCU054), but their directions are opposite.

Figure 2.2.9 shows the fault-slip distribution and the snapshot moment release process for the
Chi-Chi, Taiwan earthquake by Yagi and Kikuchi (1999).  We compare the orientation of the maximal
velocity direction (due to wave propagation from the hypocenter to the stations) and the actual
(known) orientation of slip and the slip velocity (moment release process) on the fault.  The northwest
maximal velocity directions are observed at the TCU074, TCU078, and TCU089 stations in Figure
2.2.8.  This dominant velocity direction (northwest) can be seen in the Figure 2.2.9, from the starting
point of the rupture propagation up to 15s.  The maximum slip velocity reaches to 0.9 m/s on about
20s after the rupture propagation start (in the north and northwest of the epicenter, Figure 2.2.9).

Figures 2.2.10 to 2.2.12 show the orientation of maximal velocity directions on the horizontal
plane, the velocity and acceleration time histories in the maximal velocity direction, respectively.  The
forward directivity effect, which causes most of the seismic energy from the rupture in a single large
pulse-like motion at the beginning of the records, can be clearly observed at TCU052, TCU068,
TCU075, TCU076, and TCU102 stations located very near the Chelungpu fault

Characteristics of Response Spectra

To investigate the damage potential in terms of frequency contents for those importance records,
the acceleration and velocity response spectra with 0.05 damping for the two horizontal components
and the maximal velocity direction were calculated.

Figures 2.2.13 and 2.2.14 show the predominant period of the acceleration and velocity response
spectra to the maximal velocity direction for the sixteen near-fault stations.  From these figures, the
effect of the pulse motion is clearly seen in the velocity response spectra.  The predominant period
becomes longer as the stations go to the north along the fault (corresponding the rupture propagation):
about 1-2s for TCU076 and TCU129, about 4-5s for TCU075 and TCU065, and about 10s for
TCU052 and TCU068.  The period of the pulse became longer by the cumulative effect of the seismic
radiation from the fault (Somerville, 2000).

Figures 2.2.15 and 2.2.16 show the acceleration response spectra and velocity response spectra of
the two horizontal components and the maximal direction for the sixteen selected near-fault stations.
In these figures, the change of amplitudes and spectral shape due to the forward directivity effect is
clearly observed.

It is an important lesson from the Chi-Chi earthquake that the near fault motion is quite intense
and dependent on the location with respect to the fault. The location of the hypocenter (the start point
of the rupture) and the direction of rupture propagation strongly affect the intensity and spectral
contents observed, even the range of the rupture is same.  However, these parameters are difficult to
predict before an earthquake.  Even though, if an active fault is known, we can design important
structures considering the fault-normal and fault-parallel directions.
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Figure 2.2.8.  Locations of the sixteen near-fault stations, corresponding maximal velocity direction
(arrow bar) for each near-fault station, and rotated maximum PGV direction for some stations.

Figure 2.2.9.  Distribution of the fault-slip for the 1999 Chi-Chi, Taiwan earthquake and snap shot of
moment release process by Yagi and Kikuchi (1999).
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Figure 2.2.10.  Maximal velocity direction on the horizontal plane for the sixteen near-fault stations.
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Figure 2.2.10.  Maximal velocity direction on the horizontal plane for the sixteen near-fault stations
(Continued).
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Figure 2.2.11.  Velocity time histories rotated to the maximal velocity direction.
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Figure 2.2.11.  Velocity time histories rotated to the maximal velocity direction (Continued).
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Figure 2.2.12.  Acceleration time histories rotated to the maximal velocity direction.
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Figure 2.2.12.  Acceleration time histories rotated to the maximal velocity direction (Continued).
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Figure 2.2.13.  Distribution of the predominant period for the sixteen near-fault stations and the
acceleration response spectra for these stations.

Figure 2.2.14.  Distribution of the predominant period for the sixteen near-fault stations and the
velocity response spectra for these stations.
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Figure 2.2.15.  The acceleration response spectra of two horizontal components and the maximum
velocity direction with 0.05 damping for the sixteen near-fault stations.
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Figure 2.2.15.  The acceleration response spectra of two horizontal components and the
maximum velocity direction with 0.05 damping for the sixteen near-fault stations (Continued).
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Figure 2.2.16.  The velocity response spectra of two horizontal components and the maximum velocity
direction with 0.05 damping for the sixteen near-fault stations.
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Figure 2.2.16.  The velocity response spectra of two horizontal components and the maximum
velocity direction with 0.05 damping for the sixteen near-fault stations (Continued).
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2.2.4 Summary

The characteristics of the free-field strong ground motion records of the 1999 Chi-Chi, Taiwan
earthquake were investigated.  Using 420 three-component records of the world densest network of
Seismological Center of Central Weather Bureau of Taiwan, the strong motion indices such as PGA,
PGV, IJMA, and SI were calculated (listed in Appendix).  At the stations near the Chelungpu fault with
100 kilometers south-north extension, a large pulse-like motion with the period longer than 3 seconds
was observed in the velocity time histories to the direction of maximum amplitude.  This pulse�like
motion represents the cumulative effect of the seismic radiation from the fault rupture toward the sites.

At TCU052 and TCU068 stations in the northeast hanging-wall side of Chelungpu fault, the PGV
reached as large as 266cm/s and 384cm/s, respectively.  In spite of these large PGV values, structural
damages around the instruments were not so severe.  This is due to the fact that the period of the pulse
is too long at these stations.  Since the PGV is affected by such a long period content, it is sometimes
not a reliable parameter to express structure damages.  In this sense, the IJMA and SI values reflected the
damage status more than PGV did in the Chi-Chi earthquake.

To investigate the characteristics of near-fault ground motion records in terms of spectral contents,
the acceleration and velocity response spectra to the maximal velocity direction were calculated for
sixteen near-fault stations.  From the preliminary analysis results, the forward rupture directivity was
clearly observed in the northern part of Chelungpu fault.  A large pulse motion with period longer than
5 seconds was observed to the direction almost normal to the fault.  This directivity pulse may give
significant effects to long period structures.  Fortunately, however, there were no such long period
structures along the Chelungpu fault when the earthquake occurred.

Since the 1999 Taiwan earthquake provided reliable strong ground motion data, especially for
near-fault records, a future study is necessary considering source parameters such as the direction of
slip on the fault and its slip rate and the site and geological conditions as well as forward rupture
directivity effects.
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